Please use this identifier to cite or link to this item: https://ir.iimcal.ac.in:8443/jspui/handle/123456789/4065
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRacharla, Karthikeya-
dc.contributor.authorKumar, Vineet-
dc.contributor.authorChaudhuri, Bhushan-
dc.contributor.authorKhairkar, Ankit-
dc.contributor.authorHarish, Puturu-
dc.date.accessioned2022-11-07T09:56:22Z-
dc.date.available2022-11-07T09:56:22Z-
dc.date.issued2020-
dc.identifier.urihttps://ieeexplore.ieee.org/abstract/document/9071125-
dc.identifier.urihttps://ir.iimcal.ac.in:8443/jspui/handle/123456789/4065-
dc.description.abstractWith the aim to examine one of the cornerstone problems of Musical Instrument Retrieval (MIR), a spectral feature-based methodology for the classification of predominant instruments used in an audio sample is presented. For this purpose, the IRMAS dataset has been chosen. It includes clips of 3846 music samples with around 192 minutes run-time recorded from various sources in the last century, spanning multiple genres like country folk, classical, pop-rock, Latin-soul etc., making the data set diverse and better training.en_US
dc.language.isoen_USen_US
dc.publisherStudents of PGDBA Post Graduate Diploma in Business Analytics, IIM Calcuttaen_US
dc.relation.ispartofseriesVol.1;-
dc.subjectAudio dataset,en_US
dc.subjectSpectrogramen_US
dc.subjectMel Frequency Cepstral Coefficients (MFCC)en_US
dc.subjectZero Crossing Rate (ZCR)en_US
dc.subjectSpectral Roll off (SR)en_US
dc.subjectSpectral Bandwidth (SB)en_US
dc.titlePredominant Musical Instrument Classification based on Spectral Featuresen_US
dc.typeArticleen_US
Appears in Collections:AINA 1.0 - Volume 1 Edition 2019-20

Files in This Item:
File Description SizeFormat 
Musical instrument classification-1.pdfMusical instrument classification1.17 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.