Please use this identifier to cite or link to this item: https://ir.iimcal.ac.in:8443/jspui/handle/123456789/1348
Title: Integrating operations and marketing decisions using delayed differentiation of products and guaranteed delivery time under stochastic demand
Authors: Kuthambalayan, Thyagaraj S.
Mehta, Peesush
Shanker, Kripa
Keywords: Delayed product differentiation
Generalized benders' decomposition method
Guaranteed lead time
Marketing
Operations interface
Stochastic programming
Issue Date: 2014
Publisher: SCOPUS
European Journal of Operational Research
Elsevier
Series/Report no.: 237(2)
Abstract: In this research, we integrate the issues related to operations and marketing strategy of firms characterized by large product variety, short lead times, and demand variability in an assemble-to-order environment. The operations decisions are the inventory level of components and semi-finished goods, and configuration of semi-finished goods. The marketing decisions are the products price and a lead time guarantee which is uniform for all products. We develop an integrated mathematical model that captures trade-offs related to inventory of semi-finished goods, inventory of components, outsourcing costs, and customer demand based on guaranteed lead time and price.The mathematical model is a two-stage, stochastic, integer, and non-linear programming problem. In the first stage, prior to demand realization, the operation and marketing decisions are determined. In the second stage, inventory is allocated to meet the demand. The objective is to maximize the expected profit per-unit time. The computational results on the test problems provide managerial insights for firms faced with the conflicting needs of offering: (i) low prices, (ii) guaranteed and short lead time, and (iii) a large product variety by leveraging operations decisions. We also develop a solution procedure to solve large instances of the problem based on an accelerated version of the Generalized Benders' Decomposition (GBD) method. The accelerating mechanism involves search intensification and diversification around solutions which improve the upper bound. The suggested GBD method gives a better solution and a tighter lower bound in a given time period than the conventional GBD implementation and the non-linear branch-and-bound method. �2014 Elsevier B.V. All rights reserved.
Description: Kuthambalayan, Thyagaraj S., Department of Management Studies, Indian School of Mines, Dhanbad 826 004, India; Mehta, Peesush, Operations Management Group, Indian Institute of Management Calcutta, Kolkata 700 104, India; Shanker, Kripa, Department of Industrial and Management Engineering, Indian Institute of Technology, Kanpur 208 016, India
ISSN/ISBN - 03772217
pp.617-627
DOI - 10.1016/j.ejor.2014.01.055
URI: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84899415488&doi=10.1016%2fj.ejor.2014.01.055&partnerID=40&md5=80c1f08c2e1a38656419ef9b76f90f8b
https://ir.iimcal.ac.in:8443/jspui/handle/123456789/1348
Appears in Collections:Operations Management

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.