Please use this identifier to cite or link to this item:
https://ir.iimcal.ac.in:8443/jspui/handle/123456789/1322
Title: | Optimal two-level regular designs under baseline parametrization via cosets and minimum moment aberration |
Authors: | Mukerjee, Rahul Tang, Boxin |
Keywords: | Bias Level permutation Minimum aberration Orthogonal array Principal fraction Rank condition Simple recursive set Wordlength |
Issue Date: | 2016 |
Publisher: | SCOPUS Statistica Sinica Institute of Statistical Science |
Series/Report no.: | 26(3) |
Abstract: | We consider two-level fractional factorial designs under a baseline parametrization that arises naturally when each factor has a control or baseline level. While the criterion of minimum aberration can be formulated as usual on the basis of the bias that interactions can cause in the estimation of main effects, its study is hindered by the fact that level permutation of any factor can impact such bias. This poses a serious challenge especially in the practically important highly fractionated situations where the number of factors is large. We address this problem for regular designs via explicit consideration of the principal fraction and its cosets, and obtain certain rank conditions which, in conjunction with the idea of minimum moment aberration, are seen to work well. The role of simple recursive sets is also examined with a view to achieving further simplification. Details on highly fractionated minimum aberration designs having up to 256 runs are provided. |
Description: | Mukerjee, Rahul, Indian Institute of Management Calcutta, Joka, Diamond Harbour Road, Kolkata, 700 104, India; Tang, Boxin, Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada ISSN/ISBN - 10170405 pp.1001-1019 DOI - 10.5705/ss.202015.0214 |
URI: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85011835232&doi=10.5705%2fss.202015.0214&partnerID=40&md5=b7644ecfd6b8a081ebd0814a0550fe45 https://ir.iimcal.ac.in:8443/jspui/handle/123456789/1322 |
Appears in Collections: | Operations Management |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.