Please use this identifier to cite or link to this item:
Title: Organizing national elections in India to elect the 543 members of the Lok Sabha
Authors: Nag, Bodhibrata
Murty, Katta G.
Keywords: OR in government
Graph partitioning
Hamiltonian path problem
tour segmentation problem
minimum cost flow
Issue Date: 2013
Publisher: AR-IIMC
Algorithmic Operations Research
Series/Report no.: 7(2)
Abstract: There are 833 thousand polling stations in all of the 543 parliamentary constituencies spread over 35 states of India. On the day elections are being held in any one of these polling stations, a minimum of 4 Central Police Force(CPF) personnel must be deployed there, to maintain law and order and guarantee that voters can vote freely without being intimidated by anyone. As the number of CPF personnel available for this activity is limited, it is not possible to hold the Indian General elections on a single day over the whole country. So the set of 35 States of India is partitioned into a number of subsets, with elections in each subset of states being held on a single day. This partition is required to satisfy the constraints that the states in each subset are contiguous, and the subsets themselves must be contiguous. We present a method for organizing the Indian General Elections subject to these constraints, and minimizing the total number of election days required, and the total cost for the movement of CPF personnel involved. The method is based on the shortest Hamiltonian path problem, a tour segmentation problem defined in the paper, and the bipartite minimum cost flow problem.
Description: Bodhibrata Nag , Department of Operations Management, Indian Institute of Management Calcutta, Kolkata; Katta G. Murty, Department of IOE, University of Michigan, Ann Arbor, MI 48109-2117, USA
ISSN/ISBN - 1718-3235 (digital)
Appears in Collections:Operations Management

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.