Please use this identifier to cite or link to this item: https://ir.iimcal.ac.in:8443/jspui/handle/123456789/1236
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChakraborty, Biman
dc.contributor.authorSarkar, Sahadeb
dc.contributor.authorBasu, Ayanendranath
dc.date.accessioned2021-08-26T06:05:20Z-
dc.date.available2021-08-26T06:05:20Z-
dc.date.issued2011
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-80051689177&doi=10.1007%2f978-3-642-20853-9_29&partnerID=40&md5=6236ad7d12bc67dc19cb3f81e6599e1e
dc.identifier.urihttps://ir.iimcal.ac.in:8443/jspui/handle/123456789/1236-
dc.descriptionChakraborty, Biman, School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Sarkar, Sahadeb, Operations Management Group, Indian Institute of Management, Joka, Kolkata 700 104, India; Basu, Ayanendranath, Bayesian and Interdisciplinary Research Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700 108, India
dc.descriptionISSN/ISBN - 18600832
dc.descriptionpp.423-436
dc.descriptionDOI - 10.1007/978-3-642-20853-9_29
dc.description.abstractA robust procedure, which produces the maximum likelihood estimator when the data are in conformity with the parametric model, and generates the outlier deleted maximum likelihood estimator under the presence of extreme outliers, has obvious intuitive appeal to the practising scientist. None of the currently available robust estimators achieves this automatically. Here we propose a density-based divergence belonging to the family of disparities ([7]) where the corresponding weighted likelihood estimator ([10], [11]) exhibits this desirable behavior for proper choices of tuning parameters. Some properties of the corresponding estimation procedure are discussed and illustrated through examples. � 2011 Springer-Verlag Berlin Heidelberg.
dc.publisherSCOPUS
dc.publisherUnderstanding Complex Systems
dc.relation.ispartofseries2011
dc.subjectHellinger distance
dc.subjectOutlier deleted maximum likelihood estimator
dc.subjectResidual adjustment function
dc.subjectWeighted likelihood estimation
dc.titleRobustification of the MLE without loss of efficiency
dc.typeArticle
Appears in Collections:Operations Management

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.