Please use this identifier to cite or link to this item: https://ir.iimcal.ac.in:8443/jspui/handle/123456789/1230
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMukerjee, Rahul
dc.contributor.authorTang, Boxin
dc.date.accessioned2021-08-26T06:05:20Z-
dc.date.available2021-08-26T06:05:20Z-
dc.date.issued2012
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84857508359&doi=10.1093%2fbiomet%2fasr071&partnerID=40&md5=dbf4556855e72c61433ef3c3867ac8f3
dc.identifier.urihttps://ir.iimcal.ac.in:8443/jspui/handle/123456789/1230-
dc.descriptionMukerjee, Rahul, Indian Institute of Management Calcutta, Joka, Diamond Harbour Road, Kolkata 700 104, India; Tang, Boxin, Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
dc.descriptionISSN/ISBN - 00063444
dc.descriptionpp.71-84
dc.descriptionDOI - 10.1093/biomet/asr071
dc.description.abstractTwo-level fractional factorial designs are considered under a baseline parameterization. The criterion of minimum aberration is formulated in this context and optimal designs under this criterion are investigated. The underlying theory and the concept of isomorphism turn out to be significantly different from their counterparts under orthogonal parameterization, and this is reflected in the optimal designs obtained. � 2011 Biometrika Trust.
dc.publisherSCOPUS
dc.publisherBiometrika
dc.relation.ispartofseries99(1)
dc.subjectBias
dc.subjectEffect hierarchy
dc.subjectEffect sparsity
dc.subjectHadamard matrix
dc.subjectInteraction
dc.subjectIsomorphism
dc.subjectMain effect
dc.subjectMinimum aberration
dc.subjectNon-orthogonality
dc.subjectOrthogonal array
dc.titleOptimal fractions of two-level factorials under a baseline parameterization
dc.typeArticle
Appears in Collections:Operations Management

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.