
Social Impact Bonds

Pg 03

Microfinance : The Bandhan Way

Pg 05

Is Discounting the Only Way
to Sustain an E-commerce
Business?

Pg 11

BUSINESS
REVIEW

The Economics of Technical Debt

Pg 14

Benefits of Using Logical
Framework Approach in Social
Development Sector

Pg 08

October 2014 | First Edition

THE ECONOMICS OF TECHNICAL DEBT
What is technical debt? Consider that in a business organi-
zation the IT department is rushing to meet the deadline
for development of an important software application.
The software programmers in
the IT department still have
major components to develop
as the deadline approaches. In
such a situation, either of two
things can occur:

A) The software programmer
makes a conscious decision to
compromise with the architecture of the application so
as to deliver it by the due date. He develops a long, con-
voluted logic code which does not follow the design stan-
dards laid out for the project. As a result both the code
quality and application architecture are compromised.

B) The software programmer was unaware of the design
standards or conventions for the project and he uninten-

tionally developed code that degraded the quality of the
software code.

In both cases, although the
development of the software
application may have met the
deadline and it functions cor-
rectly, the software code qual-
ity and its design standards
have been compromised. This
degradation of the design,
quality of code and architec-

ture of the software is known as the technical debt of that
software application. This has important consequences
for the future. Another programmer working on the
same software application to develop a new business ap-
plication or to make modifications to the existing one will
have to spend more time to understand those parts of
the logic of the software application whose quality had
been compromised.

The degradation of the
design, quality of code
and architecture of the
software is known as the
technical debt

14

ECONOMICS BEHIND
TECHNICAL DEBT
Measuring technical debt helps us to understand when it
is best to engage in mitigation of the technical debt and
maximize the total economic value from the software
application. New IT processes and tools make it possible
for us to measure the quantum of technical debt.

A software application can be considered as a production
function of a number of function points (unit of measurement
to measure the amount of business functionality present
in a software application) of an application and the
length of the code (measured in terms of KLOC) written
to develop the application.The output of this function is
the quantitative measurement of quality of the software
application represented as total product index.

The additional effort, resources, time and money
spent later to locate and amend the code and de-
sign to meet the expected quality standards or to re-
move any architectural shortcuts made earlier due
to shortage of time gives the measure of the size of
technical debt.

As per a study conducted by CAST, there is an
average technical debt of $3.61 per Line of Code
(LOC)[3]. According to Gartner, the current global
IT debt stands at $500 Billion, which is, expected to
double to $1 Trillion dollars by 2015[7].

Technical Debt is often compared to financial debt;
it has characteristics of principal and interest
like financial debt, except that technical debt does
not have any precise unit of measurement unit [9].
However, today with improved IT processes and
tools, technical debt can be measured either in
terms of Kilo Lines of Codes (KLOC) of the software
application or in terms of Total Quality Index (TQI):
a composite score of robustness, performance,
scalability, transferability and changeability [3] that
can be associated with monetary value[13].

Just as in financial debt, technical debt gets compounded
over time. If we do not make good the debt by putting in
effort to improve the software design and architectural
standards, the debt will increase on a compounded basis
with each successive software application release cycle,
further worsening the quality of the software application
[9].

Business management often argues that the purpose
of information technology is to support its core business
functions. Any investment in improving the quality of
the code does not justify opportunity cost in terms of
additional time and resources expended. While this may
be true in some cases, especially if the developed software
has no further application, mostly as technical debt keeps
compounding, a stage may arise when the later versions
of the application fail to be changeable (ability to make
changes quickly) and transferable (ability of other team
members or other teams to understand the existing logic)
[9], which will lead to a substantial IT budget expenditure on
maintenance rather than new development of the software
application.

15

MEASURING TECHNICAL DEBT

Function
Points

KLOC Total
Product
Index

Average
Product
Index

Marginal
Product

30 0 0 0.00 -
30 15 450 30.00 30.00
30 16 500 31.25 50.00
30 17 545 32.06 45.00
30 18 575 31.94 30.00
30 19 600 31.58 25.00
30 20 620 31.00 20.00
30 21 630 30.00 10.00
30 22 635 28.86 5.00
30 24 635 26.46 0.00
30 25 620 24.80 -15.00
30 26 600 23.08 -20.00
30 27 575 21.30 -25.00

Table 1

Table below shows the number of function points and the number
of lines of code written to develop those function points. The total
product index is the production function of the two input variables
with the variable function points kept constant.

Total product index = ƒx (Software code (KLOC),
Number of function points) - Equation 1

TOTAL PRODUCT INDEX

It represents the application’s structural quality
aspects such as: software design standards, robustness
of architecture, application scalability, security
implementation etc. and the application’s functional
intricacies such as complexity of functionality, maturity
and future usage of the application. The index gives
us a measurement of the quality of the software
application. Both these qualities have some degree
of correlation with the number of function points and
software code. The structural quality of the application
decreases as KLOC of software code written for a
given number of function points increases. While,
the functional intricacy of the application generally
increases with the increase in the number of function
points.

The impact of technical debt on a software application
can be understood through the economic analysis of
the production function (Equation-1). Here, we consider

16

that the number of function points in the production
function is constant for a given software application to be
delivered. If no measures are taken to reduce the technical
debt, then the software application code in terms of
KLOC that has to be written to deliver the next software
release will increase with each successive release due to
increasing complexity and technical challenges. The law
of diminishing marginal returns will govern the output of
every successive software application.

MARGINAL PRODUCT

It is the marginal increase in the total product index
compared to previous release for every 1 unit increase
in KLOC written to implement it. As, with each successive
release, the number of lines of code required to
implement function points increase, the total product
index of the application gradually decreases as a result,
and the marginal product declines in stage B and stage C,
after an initial increase in stage A.

 Δ Total Product Index
Marginal Product =
 Δ Software Application Code

AVERAGE PRODUCT

It is the total product index of software application
compared to the lines of code, KLOC written to implement
the same.

 Total Product Index
Average Product =
 Software Application Code

Figure-1 depicts the law of diminishing marginal returns
for a software application that has gradually acquired
technical debt with successive release cycles.

The total IT budget for a software release cycle can be
represented as: -

 Fixed Cost (Maintenance Cost)
Total IT Cost Budget =
 Variable Cost (Function Points)

Figure 1

Figure 2

If each function point is assumed to be of the same
complexity, the cost of development of each function
point will be same, as a result the total variable cost for
development of the software release will be constant.
However, the fixed maintenance cost will increase with
each successive release cycle, due to the increase of
issues attributed to the poor design or architectural flaws.

Figure-2 is divided into three stages, each representing a
different phase of software application.

700

600

500

400

300

200

100

Software Application Releases
Total

To
ta

l P
ro

du
ct

io
n

In
de

x

1 2 3 4 5 6 7 8 9 10 11 12 13

60.00

40.00

20.00

0.00

-20.00

-40.00

Software Application Releases

 Average Product Index
Marginal Product

1 2 3 4 5 6 7 8 9 10 11 12 13

A B C

A B C

17

STAGE A
When an IT investment is made by a business organization;
the goal is to implement core business functionalities
that would support business processes. During the initial
phase, IT budgets are allocated for development of the
software application. The application may have a relatively
clean design without many architectural decisions to be
considered.

New functional features are continuously added to the
application without much emphasis on degradation of the
design standards or the architectural constraints. Software
application is still in scalability mode. As shown in Figure-1,
the total product index of the application that comprises of
the structural quality and the functional intricacy increases.
Although the structural quality of the application decreases
with each subsequent application release during this stage,
overall product index increases because of increase in the
functional quality. As shown in Figure-2, the marginal product
of the software application is greater than the average
product index of the application in stage A. Therefore it is
more beneficial for the business organization to implement
business requirements without allocating significant budget
towards initiatives in resolving technical debt.

STAGE B
A software application is considered to be in this stage
once it has functionally matured. An application in a
matured state is characterized by intricate workflows and
complex business implementations. New functionality
implementation decreases considerably and majority of the
application development is for modifications or refinement
of the features in the application. During this stage, IT
expenditure towards the maintenance of the application
grows significantly. If the firm’s management does not act
towards resolving the technical debt, it will have to incur
much higher costs later owing to compounding of the debt.
The incremental change in the total product index increases
but at slower rate than in the previous stage.

In this stage, as shown in Figure-2, the marginal increase in
the product index is less than the average product index of

the software application. As a result the total product
index increases at slower rate than in the previous
stage, as shown in figure-1. Unlike stage A, where the
management can stay focused on scalability of the
application, the management should begin to think
of the future of the software application in stage B
(please refer to 7 Key Decisions: Measure, Monitor
and Mitigate Technical Debt in this article). If the
management fails to recognize the importance of
strategic decisions towards mitigating the technical
debt in this stage, the technical debt can lead to
further deterioration of the software application
and will have to be separately dealt with in Stage C.

STAGE C
This is the terminal stage for the development of the
software application. An application is categorized in
this stage when it has accumulated a large amount
of technical debt. As shown in Figure-1 the total
product index of the application declines because of
the marginal decrease in the total product index. Due
to a large amount of technical debt, the structural
quality of the application declines to such an extent
that it outweighs the functional quality of the
application. In this stage the average product index of
the application decreases due to impact of negative
marginal product index. This implies any further
changes to the application will cause more issues. A
significant IT budget goes towards maintenance of
the application rather than development of any new
functional features. The effort required for clearing
the technical debt of an application is estimated to
be greater than the total value that can be achieved
from it. Under such circumstances, the firm’s
management may have to decide to scrap the old
application and invest in building a new application
instead of fixing the problems with the existing
application. This may be because the application
has reached such a critical point that any further
enhancement or addition of new features to the
application requires changes to the existing design
implementation or architecture that is no longer
cost effective. This situation may also arise because

18

REFERENCES

1. David K. Williams - http://www.forbes.com/sites/davidkwil-
liams/2013/01/25/the-hidden- debt-that-could-be-draining-
your-company/: accessed June 16, 2014.

2. Joe McKendrick - http://www.zdnet.com/will-software-
publishers-ever- shake-off-their-technical-debt-7000010366/:
accessed June 16, 2014.

3. CAST - http://www.castsoftware.com/resources/resource/
brochures/thank-you/full-crash-report: accessed June 16,
2014.

4. The Software Engineering Institute - https://www.sei.
cmu.edu/community/td2011/upload/foser076-brown.pdf: ac-
cessed June 16, 2014.

5. James Shore - http://www.jamesshore.com/Blog/An-Ap-
proximate-Measure-of-Technical-Debt.html: accessed June 16,
2014.

6. Ward Cunningham - http:// c2.com/doc/oopsla92.html:
accessed June 16, 2014.

7. Deloitte -http://www.deloitte.com/assets/Dcom-Luxem-
bourg/Local%20Assets/Documents/Whitepapers/2014/dtt_en_
wp_techtrends_10022014.pdf: accessed June 16, 2014.

8. Wikipedia - http://en.wikipedia.org/wiki/Technical_debt:
accessed June 16, 2014.

9. Reinertsen& Associates -http://reinertsenassociates.com/
technical-debt-adding-math-metaphor/: accessed June 16,
2014.

10. Shipra Malhotra - http://www.dynamiccio.com/2014/04/
technical-debt-why-cios-should-be-bothered.php: accessed
June 16, 2014.

11. Robert S. Pindyck , Daniel L. Rubinfled , Prem L. Mehta
- Microeconomics Book, Chapters 5,6 and 7.

12. Steve McConnell - http://www.construx.com/10x_Soft-
ware_Development/Technical_Debt/: accessed June 16, 2014.

13. Jonathan Bloom -http://blog.castsoftware.com/gartner-
cast-whitepaper-how-to-monetize-application-technical-debt/:
accessed June 16, 2014.

SEVEN KEY DECISIONS MEASURE, MONITOR AND

MITIGATE TECHNICAL DEBT

Initiatives such as technical debt mitigation not
only involve the IT department, but also require
significant attention at the C-suite level; the CIO
of the firm should take this responsibility. The CIO
should invest time on 7 key decisions before creating
a strategy for technical debt mitigation.

Written by:
Abhishek Gupta
PGPEX 2015

of obsolescence of the technology platform, or of
open source alternatives available in the market,
or unavailability of technical resources. Here, a
decision to scrap the existing application and build
a new application is often considered more feasible.
The decision also depends upon the criticality and
complexity of the application. For complex business
applications that are critical to the core business
processes of the organization, it may be more
viable to invest in reducing the technical debt of the
existing application. It is thus increasingly important
for the firm to understand the significance of the
technical debt, and how timely action towards
planning of mitigation of technical debt can prevent
a software application from reaching stage C. The
goal here would be to increase the useful life of the
software application.

1. IDENTIFY THE STAGE

2. ACCESS THE USEFUL LIFE

3. IDENTIFY THE CRITICAL BUSINESS

 COMPONENTS

4. ESTIMATE TECHNICAL DEBT

5. BUY-IN FROM CEO

6. RE-ESTIMATE DEVELOPMENT

 EFFORT

7. LONG TERM STRATEGY

19

THE TEAM

Editorial
Fahd Fakih
Raghvendra Upadhya

Design
Mayank Agrawal
Prithwish Basu

Email : pgpexconnect@iimcal.ac.in

